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Modeling of DoseResponse Relationships
by Bernard Altshuler*

The main dose-response models for chronic toxicity are considered. For dichotomous
response, the log probit, multi-hit, and multistage models are presented. For time-to-
occurrence response, the log-normal and three variations of multistage models are presented.
Finally, the Cornfield hockey-stick model is considered, and, for low-dose extrapolation, it is
suggested that response be taken to be proportional to dose and to a power of time determined
by background response.

Introduction
The focus of this paper is on chronic toxicity

with irreversible components and in particular on
cancer. It presents the more important dose-
response functions, which are of two kinds: dichot-
omous response and timed response.

In dichotomous response, the outcome of a
single animal trial is either "yes, with cancer" or
"no, without cancer;" the animal is either a re-
sponder or a nonresponder. Response of an exper-
imental group of animals is the fraction of re-
sponders.
Timed response refers to the measurement of

the experimental life of the animal which is termi-
nated by the occurrence of cancer or the occur-
rence of some noncancer event and are described
by time-to-occurrence models. The situation in-
volves competing risks. Death without cancer
preempts the subsequent occurrence of cancer and
complicates the experimental results. However,
the complications of competing risks are not dis-
cussed. Here, it is simply assumed that every
animal is destined to get cancer if it lives long
enough so that there is a potential time-to-
occurrence for each animal. Thus it is meaningful
to speak of a distribution of times to occurrence in
the animal population. Correcting for premature
deaths, the dichotomous response can be obtained
as the fraction of responders at a preset time.
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The main point of dealing with timed response is
that cancer is an evolutionary process in time. Its
theoretical basis should therefore be concerned
with progression in time. In particular, the multi-
stage dichotomous model is to be understood by its
derivation from the multistage time-to-occurrence
model.

It is desirable to be able to derive the models
from a theoretical understanding of the biological
mechanisms. Unfortunately, the theory is not well
enough established, and, for the most part, dose-
response models should be regarded as empirical
forms chosen because of their fits to the data.
Since these models are used for low-dose extrapo-
lation outside the experimental range of doses, one
needs to know the behavior of the functions at low
doses and form some judgment as to their relative
credibilities (1-5).

Dichotomous Response Models
The dichotomous response function is a probabil-

ity distribution function P(d), where d is a generic
dose quantity: total dose, dose rate, daily dose or
concentration. In chronic exposure, d usually means
dose rate. The response function for responders is
the combined effect of induced response and back-
ground response and this relationship needs to be
specified. Two different cases will be considered,
each specifying the same form of the response
function P(d) to be presented in the subsections.

In case 1, the case of independence, the induced
response P(d), d = dose, is independent of back-
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ground response PO, and it follows that

PO + (1 - PO) P(d) = fraction of responders
This expression is often described as Abbot's
correction.

In case 2, the case of dose equivalence, total
response depends on background in such a manner
that background response can be regarded as
induced by an equivalent background dose do of
the toxic substance. Thus, in this case, the induced
response is P(d) - P(do) where

P(d) = fraction of responders

and the dose quantity is

d = dose + do

Log Probit Response
The log probit response P(d) is the cumulative

probability function for the normal distribution with
log dose as the distributed variable, i.e.,

P(d) = 1 x
V2Tr log (Tg

Clog d 2

J expj -1/2 ( - log d50 ) Jdx

(1)

where d50 is the median, or geometric mean, and
ag is the geometric standard deviation. It has the
property that, at low doses, response decreases
faster with decreasing dose than any positive power
of dose. This form of response is associated with
the classic deterministic approach of the toxicolo-
gist. Each animal has its unique susceptibility ex-
pressed as a tolerance dose d. This means that, if
dose is less than d, the animal does not respond; if
dose is greater than d, the animal does respond.
The log probit response is then interpreted as saying
the logarithm of the tolerance dose is normally
distributed.

It is an empirical fact that the log probit is a
good fit in a great many biological situations. In-
deed it is almost universally regarded as a reason-
able approximation. It is this experience which
justifies its application, but this is hardly a theo-
retical basis, and one must recognize that tails of
the distribution are not expected to be good fits.
With a normal distribution, one naturally thinks
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of the Central Limit Theorem which states the
following: consider a sequence of independent ran-
dom variables (distributed variables) and consider
the sum of a finite subsequence; when the number
of variables being summed is sufficiently large, the
sum will be distributed approximately normally
with minor restriction on how the individual vari-
ables are distributed.
Now, suppose tolerance is proportional to the

sum or product of many factors, each of which is
independently distributed among the population.
Then it is plausible that tolerance or log tolerance
would be normally distributed depending on whether
the factors are additive or multiplicative. Still this
is not biological justification; almost nothing has
been said about the process.

The Multi-hit Response
The gamma distribution function

COd

P(d) = 1
F(k) °

xk-1 e-xdx (2)

can also provide a good fit to data (6).
It can be derived from the assumption that there

is a discrete change, called a hit, which has to
occur several times in order to produce the re-
sponse. The expected number of hits is propor-
tional to dose and equal to Od. The number of hits
is given by Poisson statistics and Eq. (2) gives the
probability of at least k hits with r(k) = (k - 1)!
For an empirical fit, k does not have to be an

integer. r(k) is the gamma function defined by the
integral when the upper limit, Od, is infinite.
The important feature of this response is its

behavior as the kth power of dose at low doses,
i.e., P(d) = (0 d)klF (k) as d -O 0.
When k = 1, the response becomes the one-hit

function (3)

P(d) = 1 - eld (3)

which is linear at low dose, i.e., P(d) = Od.

Multistage Dichotomous Response
Derived from the multistage time-to-occurrence

model discussed later (7), the response function is

P(d) = 1 - expf - (a1d + . . . + akdk)} (4)

where all coefficients ai are nonnegative. Here k is
the number of discrete transitions in the cancer
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process which are dose-dependent. Since a1 is pos-
itive as required by spontaneous (background) tran-
sition rates, this response approximates a one-hit
response at low dose, i.e.,

P(d) 1 - e-ld
(5)

Time-to-Occurrence Models
Each animal is assumed to have a potential

time-to-occurrence T whose distribution is given
by a cumulative probability function representing
the fraction of responders with T less than or
equal to a time t. As was done for the dichotomous
models, two cases will be considered for defining
the response function P(t;d).

In case 1, assuming induced response is inde-
pendent of background response PO(t), it is given
by

Po(t) + [1 - PO (t)] P(t;d) = Prob{T - t; d = dose}
(6)

In case 2, assuming an equivalent background
dose do for background response, the fraction of
responders is

P(t;d) = Prob{T - t;d = dose + do} (7)

Lognormal Model
Time-to-occurrence data are generally well fitted

by the lognormal distribution function

P(t;d) = 1 x
Nr;, log ag

fIgexp {1/2( X -log t50 ) } dx

oc log Urg
(8)

with median time t50 related to dose d by the
equation

n

d t50 = constant (9a)

or, equivalently,

log t50 = constant/n - log din (9b)
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When geometric standard deviation Urg is assumed
to remain constant, the model has been applied by
Albert and Altshuler (8), who refer to it as the
Blum-Druckrey model. With t fixed, the dichoto-
mous log probit response is obtained, where log d
is the normally distributed variable (9).

In a plot of response P against log t, the effect of
a change in dose is to shift the curve horizontally
along the time axis, parallel to itself. This prop-
erty is important irrespective of the form of the
response function.

The Multistage Model
The multistage model is based on real biological

premises. It was first proposed by Armitage and
Doll (10) to explain epidemiological data which
showed incidence rates increasing with a rather
high power of time. The simplest formulation
arises from the following assumptions: (1) A tumor
develops out of a single transformed cell. (2) It
takes a time w for the transformed cell to grow
into an observable tumor. Thus there is no re-
sponse until time t is greater than the delay w, and
time-to-transformation is time-to-tumor less the
delay w. (3) A target cell becomes transformed
by k discrete changes which advance the cell
through a sequence of stages. (4) The timing of the
discrete changes, called transitions, is governed by
transition rates which do not change with time. (5)
Background response is governed by the sponta-
neous transition rates. (6) The number of dose
dependent transitions, m, may be less than the
number of transitions, k.
The expression -log[1 x P(t;d)] is the cumula-

tive hazard, which is the same as cumulative inci-
dence. Its derivative is hazard rate or incidence
rate. From the assumptions, it follows that cumu-
lative hazard is proportional to the kth power of
time and to the product of the transition rates. If
each of the m dose-dependent transition rates is
proportional to dose, cumulative hazard varies as
the mth power of dose and the resulting expres-
sion is a Weibull distribution

-log[1 - P(t;d)] = adm(t- W)k (10)

where a is the constant of proportionality.
As first pointed out by both Armitage and Peto

and published by Crump et al. (7), if the dose-
dependent transition rates are linear functions of
d, i.e., a constant plus a constant times dose, then
the product of all these linear functions is a poly-
nomial in d of degree m, and this leads to the more
flexible expression
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-log[1 - P(t;d)] = (ald + . . . + a d)?) (t - W)k
(11)

Fixing t results in the multistage dichotomous model.
Hartley and Sielken (11) generalized further by

introducing a polynomial in time to get a better
temporal fit, but without biological basis. Their
response function is

-log[1 - P(t;d)] =

(ald + . . . + amdm) [bi(t-w) + ... + b,(t-w)k]
(12)

It also implies the multistage dichotomous model.
The form of the response function holds under

more general and perhaps more realistic assump-
tions. For example, clonal growth may occur in
intermediate stages and transition rates may be
time dependent.

It is also to be noted that a change in dose will
shift the plotted curve vertically in the direction of
the hazard or incidence axis, which means the time
pattern of incidence rates does not change with
dose. This is very different from the time shift of
the lognormal model and the distinction is impor-
tant for low dose extrapolation.

Low-Dose Quasi-Threshold
Response

Cornfield (12) has suggested the hockey-stick
type of response function, illustrated in Figure 1,
based on a kinetic theory of activation and deacti-
vation mechanisms. A quasi-threshold, represented
by the solid black dot, is determined by the dose

Response

Dose
Linear Low-Slope High-Slope Function
Near Zero in Lower Part of Observed Range

P(t;d) - exp {-a d t}
k is Determined by Background Response

FIGURE 1. Quasi-threshold response.

which just saturates the deactivation mechanism.
His kinetic theory may not be acceptable, but it is
important to recognize that this hockey-stick curve
does agree with two main features of the dose-
response curve as many people picture it. First,
near zero, the curve is linear with such a low slope
that a positive response is not detected by experi-
mental observation. Secondly, in the dose range
where positive response is observed, the slope is
relatively high. Thus, if the open circle represents
lowest dose with a statistically significant response,
the dotted line connecting it to the origin is above
the true response curve.

It is fitting to close this paper with reference to
a low-dose time-to-occurrence model proposed by
the Environmental Protection Agency (13). It does
not pretend to be more than a rough ballpark
approximation and perhaps it should not be given
the aura of a formal model, but we also have to
recognize all the models are rough approximations
at low doses. Shown at the bottom of Figure 1 is
the Weibull distribution with cumulative hazard
proportional to the first power of dose and the kth
power of time. EPA used k = 3. However, as also
noted in Figure 1, k should really be determined
by the time dependence of background response.
EPA has proposed to determine the proportion-

ality constant a from the response at the smallest
dose with a significant observed effect, as illus-
trated by the open circle.
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